Reiter's condition $P_{2}$ and the Plancherel measure for hypergroups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reiter P2–condition and the Plancherel Measure for Hypergroups

In this paper we study the Reiter P2 – condition for commutativ hypergroups and give necessary and sufficient conditions for x ∈ supp π, where π is the Plancherel measure. Finally we apply the general results to characterize supp π in the case of polynomial hypergroups. AMS Subject Classification (1991):43A62, 42C05, 43A07

متن کامل

Stein's Method and Plancherel Measure of the Symmetric Group Running Head: Stein's Method and Plancherel Measure

X iv :m at h/ 03 05 42 3v 3 [ m at h. R T ] 1 1 N ov 2 00 3 Stein’s Method and Plancherel Measure of the Symmetric Group Running head: Stein’s Method and Plancherel Measure By Jason Fulman University of Pittsburgh Department of Mathematics 301 Thackeray Hall Pittsburgh, PA 15260 Email: [email protected] Abstract: We initiate a Stein’s method approach to the study of the Plancherel measure of...

متن کامل

Central Limit Theorem for Random Partitions under the Plancherel Measure

A partition of a natural number n is any integer sequence λ = (λ1, λ2, . . . ) such that λ1 ≥ λ2 ≥ · · · ≥ 0 and λ1 + λ2 + · · · = n (notation: λ ⊢ n). In particular, λ1 = max{λi ∈ λ}. Every partition λ ⊢ n can be represented geometrically by a planar shape called the Young diagram, consisting of n unit cell arranged in consecutive columns, containing λ1, λ2, . . . cells, respectively. On the s...

متن کامل

PLANCHEREL MEASURE FOR GL(n): EXPLICIT FORMULAS AND BERNSTEIN DECOMPOSITION

Let F be a nonarchimedean local field, let GL(n) = GL(n, F ) and let ν denote Plancherel measure for GL(n). Let Ω be a component in the Bernstein variety Ω(GL(n)). Then Ω yields its fundamental invariants: the cardinality q of the residue field of F , the sizes m1, . . . ,mt, exponents e1, . . . , et, torsion numbers r1, . . . , rt, formal degrees d1, . . . , dt and the Artin conductors f11, . ...

متن کامل

The associated measure on locally compact cocommutative KPC-hypergroups

We study harmonic analysis on cocommutative KPC-hyper-groups‎, which is a generalization of DJS-hypergroups‎, ‎introduced by Kalyuzhnyi‎, ‎Podkolzin and Chapovsky‎. ‎We prove that there is a relationship between‎ ‎the associated measures $mu$ and $gamma mu$‎, ‎where $mu$ is‎ ‎a Radon measure on KPC-hypergroup $Q$ and $gamma$ is a character on $Q$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2000

ISSN: 0019-2082

DOI: 10.1215/ijm/1255984951